skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Benito, Juan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract For centuries, fossils from the Maastrichtian type locality and adjacent quarries have provided key evidence of vertebrate diversity during the latest Cretaceous, yet until recently the Maastrichtian type area had revealed no important insights into the evolutionary history of birds, one of the world’s most conspicuous groups of extant tetrapods. With the benefit of high-resolution micro-CT scanning, two important avian fossils from the Maastrichtian type area have now been examined in detail, offering profound, complementary insights into the evolutionary history of birds. The holotype specimens of these new taxa,Janavis finalidensBenito, Kuo, Widrig, Jagt and Field, 2022, andAsteriornis maastrichtensisField, Benito, Chen, Jagt and Ksepka, 2020, were originally collected in the late 1990s, but were only investigated in detail more than twenty years later. Collectively,JanavisandAsteriornisprovide some of the best evidence worldwide regarding the factors that influenced stem bird extinction and crown bird survivorship through the Cretaceous-Palaeogene transition, as well as insights into the origins of key anatomical features of birds such as an extensively pneumatised postcranial skeleton, a kinetic palate, and a toothless beak.Asteriornisalso provides scarce evidence of a Cretaceous-aged divergence time calibration within the avian crown group, while together,JanavisandAsteriornisconstitute the only documented co-occurrence of crown birds and non-neornithine avialans. Here, we review key insights into avian evolutionary history provided by these discoveries from the Maastrichtian stratotype, document undescribed and newly discovered Maastrichtian fossils potentially attributable to Avialae and provide the first histological data for the holotype ofAsteriornis, illustrating its skeletal maturity at the time of its death. 
    more » « less
  2. Ichthyornishas long been recognized as a pivotally important fossil taxon for understanding the latest stages of the dinosaur–bird transition, but little significant new postcranial material has been brought to light since initial descriptions of partial skeletons in the 19thCentury. Here, we present new information on the postcranial morphology ofIchthyornisfrom 40 previously undescribed specimens, providing the most complete morphological assessment of the postcranial skeleton ofIchthyornisto date. The new material includes four partially complete skeletons and numerous well-preserved isolated elements, enabling new anatomical observations such as muscle attachments previously undescribed for Mesozoic euornitheans. Among the elements that were previously unknown or poorly represented forIchthyornis, the new specimens include an almost-complete axial series, a hypocleideum-bearing furcula, radial carpal bones, fibulae, a complete tarsometatarsus bearing a rudimentary hypotarsus, and one of the first-known nearly complete three-dimensional sterna from a Mesozoic avialan. Several pedal phalanges are preserved, revealing a remarkably enlarged pes presumably related to foot-propelled swimming. Although diagnosable asIchthyornis, the new specimens exhibit a substantial degree of morphological variation, some of which may relate to ontogenetic changes. Phylogenetic analyses incorporating our new data and employing alternative morphological datasets recoverIchthyornisstemward of Hesperornithes andIaceornis, in line with some recent hypotheses regarding the topology of the crownward-most portion of the avian stem group, and we establish phylogenetically-defined clade names for relevant avialan subclades to help facilitate consistent discourse in future work. The new information provided by these specimens improves our understanding of morphological evolution among the crownward-most non-neornithine avialans immediately preceding the origin of crown group birds. 
    more » « less
  3. Our understanding of the earliest stages of crown bird evolution is hindered by an exceedingly sparse avian fossil record from the Mesozoic era. The most ancient phylogenetic divergences among crown birds are known to have occurred in the Cretaceous period but stem-lineage representatives of the deepest subclades of crown birds—Palaeognathae (ostriches and kin), Galloanserae (landfowl and waterfowl) and Neoaves (all other extant birds)—are unknown from the Mesozoic era. As a result, key questions related to the ecology, biogeography and divergence times of ancestral crown birds remain unanswered. Here we report a new Mesozoic fossil that occupies a position close to the last common ancestor of Galloanserae and fills a key phylogenetic gap in the early evolutionary history of crown birds. Asteriornis maastrichtensis, gen. et sp. nov., from the Maastrichtian age of Belgium (66.8–66.7 million years ago), is represented by a nearly complete, three-dimensionally preserved skull and associated postcranial elements. The fossil represents one of the only well-supported crown birds from the Mesozoic era, and is the first Mesozoic crown bird with well-represented cranial remains. Asteriornis maastrichtensis exhibits a previously undocumented combination of galliform (landfowl)-like and anseriform (waterfowl)-like features, and its presence alongside a previously reported Ichthyornis-like taxon from the same locality provides direct evidence of the co-occurrence of crown birds and avialan stem birds. Its occurrence in the Northern Hemisphere challenges biogeographical hypotheses of a Gondwanan origin of crown birds, and its relatively small size and possible littoral ecology may corroborate proposed ecological filters that influenced the persistence of crown birds through the end-Cretaceous mass extinction. 
    more » « less